Affinity of alpha-actinin for actin determines the structure and mechanical properties of actin filament gels.

نویسندگان

  • D H Wachsstock
  • W H Schwartz
  • T D Pollard
چکیده

Proteins that cross-link actin filaments can either form bundles of parallel filaments or isotropic networks of individual filaments. We have found that mixtures of actin filaments with alpha-actinin purified from either Acanthamoeba castellanii or chicken smooth muscle can form bundles or isotropic networks depending on their concentration. Low concentrations of alpha-actinin and actin filaments form networks indistinguishable in electron micrographs from gels of actin alone. Higher concentrations of alpha-actinin and actin filaments form bundles. The threshold for bundling depends on the affinity of the alpha-actinin for actin. The complex of Acanthamoeba alpha-actinin with actin filaments has a Kd of 4.7 microM and a bundling threshold of 0.1 microM; chicken smooth muscle has a Kd of 0.6 microM and a bundling threshold of 1 microM. The physical properties of isotropic networks of cross-linked actin filaments are very different from a gel of bundles: the network behaves like a solid because each actin filament is part of a single structure that encompasses all the filaments. Bundles of filaments behave more like a very viscous fluid because each bundle, while very long and stiff, can slip past other bundles. We have developed a computer model that predicts the bundling threshold based on four variables: the length of the actin filaments, the affinity of the alpha-actinin for actin, and the concentrations of actin and alpha-actinin.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Calponin interaction with alpha-actinin-actin: evidence for a structural role for calponin.

The purpose of this study was to address the paradox of calponin localization with alpha-actinin and filamin, two proteins with tandem calponin homology (CH) domains, by determining the effect of these proteins on the binding of calponin to actin. The results show that actin can accommodate near-saturating concentrations of either calponin and alpha-actinin or calponin and filamin with little c...

متن کامل

Cross-linker dynamics determine the mechanical properties of actin gels.

To evaluate the contributions of cross-linker dynamics and polymer deformation to the frequency-dependent stiffness of actin filament gels, we compared the rheological properties of actin gels with three types of cross-linkers: a weak one, Acanthamoeba alpha-actinin (dissociation rate constant 5.2 s-1, association rate constant 1.1 x 10(6) M-1 s-1); a strong one, chicken smooth muscle alpha-act...

متن کامل

Sound attenuation of polymerizing actin reflects supramolecular structures: viscoelastic properties of actin gels modified by cytochalasin D, profilin and alpha-actinin.

Polymerization and depolymerization of cytoskeletal elements maintaining cytoplasmic stiffness are key factors in the control of cell crawling. Rheometry is a significant tool in determining the mechanical properties of the single elements in vitro. Viscoelasticity of gels formed by these polymers strongly depends on both the length and the associations of the filaments (e.g. entanglements, ann...

متن کامل

α-Actinin and Filamin Cooperatively Enhance the Stiffness of Actin Filament Networks

BACKGROUND The close subcellular proximity of different actin filament crosslinking proteins suggests that these proteins may cooperate to organize F-actin structures to drive complex cellular functions during cell adhesion, motility and division. Here we hypothesize that alpha-actinin and filamin, two major F-actin crosslinking proteins that are both present in the lamella of adherent cells, d...

متن کامل

Micromechanics and ultrastructure of actin filament networks crosslinked by human fascin: a comparison with alpha-actinin.

Fascin is an actin crosslinking protein that organizes actin filaments into tightly packed bundles believed to mediate the formation of cellular protrusions and to provide mechanical support to stress fibers. Using quantitative rheological methods, we studied the evolution of the mechanical behavior of filamentous actin (F-actin) networks assembled in the presence of human fascin. The mechanica...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biophysical journal

دوره 65 1  شماره 

صفحات  -

تاریخ انتشار 1993